Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(15)2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751833

RESUMEN

: Experimental evidence highlights the involvement of the endoplasmic reticulum (ER)-mediated Ca2+ signals in modulating synaptic plasticity and spatial memory formation in the hippocampus. Ca2+ release from the ER mainly occurs through two classes of Ca2+ channels, inositol 1,4,5-trisphosphate receptors (InsP3Rs) and ryanodine receptors (RyRs). Calsequestrin (CASQ) and calreticulin (CR) are the most abundant Ca2+-binding proteins allowing ER Ca2+ storage. The hippocampus is one of the brain regions expressing CASQ, but its role in neuronal activity, plasticity, and the learning processes is poorly investigated. Here, we used knockout mice lacking both CASQ type-1 and type-2 isoforms (double (d)CASQ-null mice) to: a) evaluate in adulthood the neuronal electrophysiological properties and synaptic plasticity in the hippocampal Cornu Ammonis 1 (CA1) field and b) study the performance of knockout mice in spatial learning tasks. The ablation of CASQ increased the CA1 neuron excitability and improved the long-term potentiation (LTP) maintenance. Consistently, (d)CASQ-null mice performed significantly better than controls in the Morris Water Maze task, needing a shorter time to develop a spatial preference for the goal. The Ca2+ handling analysis in CA1 pyramidal cells showed a decrement of Ca2+ transient amplitude in (d)CASQ-null mouse neurons, which is consistent with a decrease in afterhyperpolarization improving LTP. Altogether, our findings suggest that CASQ deletion affects activity-dependent ER Ca2+ release, thus facilitating synaptic plasticity and spatial learning in post-natal development.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Proteínas de Unión al Calcio/fisiología , Calsecuestrina/fisiología , Plasticidad Neuronal , Aprendizaje Espacial , Animales , Región CA1 Hipocampal/citología , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Calsecuestrina/genética , Retículo Endoplásmico/metabolismo , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Piramidales/citología , Células Piramidales/metabolismo
2.
Mol Neurobiol ; 55(10): 7822-7838, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29468563

RESUMEN

Seizure-triggered maladaptive neural plasticity and neuroinflammation occur during the latent period as a key underlying event in epilepsy chronicization. Previously, we showed that α-tocopherol (α-T) reduces hippocampal neuroglial activation and neurodegeneration in the rat model of kainic acid (KA)-induced status epilepticus (SE). These findings allowed us to postulate an antiepileptogenic potential for α-T in hippocampal excitotoxicity, in line with clinical evidence showing that α-T improves seizure control in drug-resistant patients. To explore neurobiological correlates of the α-T antiepileptogenic role, rats were injected with such vitamin during the latent period starting right after KA-induced SE, and the effects on circuitry excitability, neuroinflammation, neuronal death, and microRNA (miRNA) expression were investigated in the hippocampus. Results show that in α-T-treated epileptic rats, (1) the number of population spikes elicited by pyramidal neurons, as well as the latency to the onset of epileptiform-like network activity recover to control levels; (2) neuronal death is almost prevented; (3) down-regulation of claudin, a blood-brain barrier protein, is fully reversed; (4) neuroinflammation processes are quenched (as indicated by the decrease of TNF-α, IL-1ß, GFAP, IBA-1, and increase of IL-6); (5) miR-146a, miR-124, and miR-126 expression is coherently modulated in hippocampus and serum by α-T. These findings support the potential of a timely intervention with α-T in clinical management of SE to reduce epileptogenesis, thus preventing chronic epilepsy development. In addition, we suggest that the analysis of miRNA levels in serum could provide clinicians with a tool to evaluate disease evolution and the efficacy of α-T therapy in SE.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Convulsiones/inducido químicamente , Convulsiones/genética , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/genética , alfa-Tocoferol/uso terapéutico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Inflamación/patología , Ácido Kaínico , Masculino , MicroARNs/metabolismo , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/patología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de GABA/metabolismo , Convulsiones/fisiopatología , Estado Epiléptico/fisiopatología , Xenopus , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , alfa-Tocoferol/farmacología
3.
Int J Mol Sci ; 17(12)2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27983697

RESUMEN

Neuroplasticity is an "umbrella term" referring to the complex, multifaceted physiological processes that mediate the ongoing structural and functional modifications occurring, at various time- and size-scales, in the ever-changing immature and adult brain, and that represent the basis for fundamental neurocognitive behavioral functions; in addition, maladaptive neuroplasticity plays a role in the pathophysiology of neuropsychiatric dysfunctions. Experiential cues and several endogenous and exogenous factors can regulate neuroplasticity; among these, vitamin E, and in particular α-tocopherol (α-T), the isoform with highest bioactivity, exerts potent effects on many plasticity-related events in both the physiological and pathological brain. In this review, the role of vitamin E/α-T in regulating diverse aspects of neuroplasticity is analyzed and discussed, focusing on the hippocampus, a brain structure that remains highly plastic throughout the lifespan and is involved in cognitive functions. Vitamin E-mediated influences on hippocampal synaptic plasticity and related cognitive behavior, on post-natal development and adult hippocampal neurogenesis, as well as on cellular and molecular disruptions in kainate-induced temporal seizures are described. Besides underscoring the relevance of its antioxidant properties, non-antioxidant functions of vitamin E/α-T, mainly involving regulation of cell signaling molecules and their target proteins, have been highlighted to help interpret the possible mechanisms underlying the effects on neuroplasticity.


Asunto(s)
Hipocampo/patología , Hipocampo/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , alfa-Tocoferol/farmacología , Animales , Cognición/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Humanos , Neurogénesis/efectos de los fármacos
4.
PLoS One ; 10(11): e0141970, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26529517

RESUMEN

Physical fitness has salutary psychological and physical effects in older adults by promoting neuroplasticity and adaptation to stress. In aging, however, the effects of fitness on the hypothalamic-pituitary-adrenal (HPA) axis are mixed. We investigated the association between cardiorespiratory fitness and HPA activity in healthy elderly men (n = 22, mean age 68 y; smokers, obese subjects, those taking drugs or reporting recent stressful events were excluded), by measuring in saliva: i) daily pattern of cortisol secretion (6 samples: 30' post-awakening, and at 12.00, 15.00, 18.00, 21.00, 24.00 h); and ii) the cortisol response to a mental challenge. Cardiorespiratory fitness (VO2max) was estimated using the Rockport Walking Test and the participants were assigned to high-fit (HF, ≥60°, n = 10) and low-fit (LF, ≤35°, n = 12) groups according to age-specific percentiles of VO2max distribution in the general population. At all daytimes, basal cortisol levels were lower in the HF than the LF group, most notably in the evening and midnight samples, with a significant main effect of physical fitness for cortisol levels overall; the area-under-the-curve for total daily cortisol output was significantly smaller in the HF group. Among the subjects who responded to mental stress (baseline-to-peak increment >1.5 nmol/L; n = 13, 5 LF, 8 HF), the amplitude of cortisol response and the steepness of recovery decline displayed an increasing trend in the HF subjects, although between-group differences failed to reach the threshold for significance. In conclusion, cardiorespiratory fitness in healthy aging men is negatively correlated with daily cortisol output and contributes to buffering the HPA dysregulation that occurs with advancing age, thus possibly playing a beneficial role in contrasting age-related cognitive and physical decline.


Asunto(s)
Envejecimiento/metabolismo , Prueba de Esfuerzo , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Saliva/metabolismo , Adulto , Anciano , Humanos , Sistema Hipotálamo-Hipofisario/fisiopatología , Masculino , Persona de Mediana Edad , Sistema Hipófiso-Suprarrenal/fisiopatología
5.
Mol Neurobiol ; 50(1): 246-56, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24488645

RESUMEN

Vitamin E (as α-tocopherol, α-T) was shown to have beneficial effects in epilepsy, mainly ascribed to its antioxidant properties. Besides radical-induced neurotoxicity, neuroinflammation is also involved in the pathophysiology of epilepsy, since neuroglial activation and cytokine production exacerbate seizure-induced neurotoxicity and contribute to epileptogenesis. We previously showed that α-T oral supplementation before inducing status epilepticus, markedly reduces astrocytic and microglial activation, neuronal cell death and oxidative stress in the hippocampus, as observed 4 days after seizure. In order to evaluate the possibility that such a neuroprotective and anti-inflammatory effect may also provide a strategy for an acute intervention in epilepsy, in this study, seizures were induced by single intaperitoneal injection of kainic acid and, starting from 3 h after status epilepticus, rats were treated with an intraperitoneal bolus of α-T (250 mg/kg b.w.; once a day) for 4 days, that was the time after which morphological and biochemical analyses were performed on hippocampus. Post-seizure α-T administration significantly reduced astrocytosis and microglia activation, and decreased neuron degeneration and spine loss; these effects were associated with the presence of a lowered lipid peroxidation in hippocampus. These results confirm and further emphasize the anti-inflammatory and neuroprotective role of α-T in kainic acid-induced epilepsy. Moreover, the findings show that post-seizure treatment with α-T provides an effective secondary prevention against post-seizure inflammation-induced brain damages and possibly against their epileptogenic effects.


Asunto(s)
Encefalitis/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Degeneración Nerviosa/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Estado Epiléptico/tratamiento farmacológico , alfa-Tocoferol/uso terapéutico , Animales , Muerte Celular/efectos de los fármacos , Encefalitis/etiología , Encefalitis/patología , Hipocampo/patología , Ácido Kaínico , Peroxidación de Lípido/efectos de los fármacos , Masculino , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/complicaciones , Estado Epiléptico/patología , alfa-Tocoferol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...